Nombre del producto:6-{[(5-cyclopropaneamido-1,3,4-thiadiazol-2-yl)sulfanyl]methyl}-4-oxo-4H-pyran-3-yl 5-bromofuran-2-carboxylate

IUPAC Name:6-{[(5-cyclopropaneamido-1,3,4-thiadiazol-2-yl)sulfanyl]methyl}-4-oxo-4H-pyran-3-yl 5-bromofuran-2-carboxylate

CAS:896010-05-2
Fórmula molecular:C17H12BrN3O6S2
Pureza:95%+
Número de catálogo:CM894633
Peso molecular:498.32

Unidad de embalaje Stock disponible Precio($) Cantidad

Sólo para uso en I+D..

Formulario de consulta

   refresh    

Detalles del producto

Núm. De CAS :896010-05-2
Fórmula molecular:C17H12BrN3O6S2
Punto de fusión:-
Código de sonrisas:BrC1=CC=C(O1)C(=O)OC1=COC(CSC2=NN=C(NC(=O)C3CC3)S2)=CC1=O
Densidad:
Número de catálogo:CM894633
Peso molecular:498.32
Punto de ebullición:
Nº Mdl:
Almacenamiento:

Category Infos

Furans
Furan is a cyclic flammable liquid compound C4H4O that is obtained from wood oils of pines or made synthetically and is used especially in organic synthesis. Furan is aromatic because a pair of lone pair electrons of the oxygen atom in its molecule forms a large π bond in the plane of the conjugated orbital, making a total of 6 electrons in the plane of the conjugated plane, conforming to the 4n+2 structure. Aromaticity makes furan have the property of easy substitution and difficult addition. The other lone pair of electrons in oxygen stretches out. The oxygen atom itself conforms to sp2 hybridization. Due to the presence of the aromatic ring, the chemical behavior of furan is not very similar to that of other unsaturated heterocycles. The oxygen in the aromatic ring has an electron-donating effect, so the electrophilic substitution reactivity of furan is stronger than that of benzene.
Furan | C4H4O | Where to Buy Furans-Chemenu
Furane | Furanes | Furfuran | Furan | C4H4O | Furan Synthesis | Where to Buy Furans
Looking to buy furan? Chemenu offers a diverse selection of high-quality furan compounds. Find the perfect furans for your research or industrial applications. Explore our inventory today!
Thiadiazoles
Thiadiazoles are a subfamily of azoles. Structurally, they are five-membered heterocyclic compounds containing two nitrogen atoms and one sulfur atom, and two double bonds, forming an aromatic ring. Depending on the relative positions of the heteroatoms, there are four possible structures; these forms do not interconvert and are therefore structural isomers rather than tautomers. These compounds themselves are rarely synthesized and have no particular utility, however, compounds that use them as structural motifs are fairly common in pharmacology.
Pyrones
Pyrones or pyranones are a class of heterocyclic chemical compounds. They contain an unsaturated six-membered ring containing one oxygen atom and a ketone functional group. There are two isomers denoted as 2-pyrone and 4-pyrone. 2-Pyrone is used in organic synthesis as a building block for more complex chemical structures because it may participate in a variety of cycloaddition reactions to form bicyclic lactones. Pyrone derivatives are extremely prevalent structural motif in diverse naturally and synthetically occurring bioactive molecules having a broad array of chemotherapeutic potentials.