Nombre del producto:5-[(1,3-dioxolan-2-yl)methoxy]-2-{[4-(4-fluorophenyl)piperazin-1-yl]methyl}-4H-pyran-4-one

IUPAC Name:5-[(1,3-dioxolan-2-yl)methoxy]-2-{[4-(4-fluorophenyl)piperazin-1-yl]methyl}-4H-pyran-4-one

CAS:886900-67-0
Fórmula molecular:C20H23FN2O5
Pureza:95%+
Número de catálogo:CM893339
Peso molecular:390.41

Unidad de embalaje Stock disponible Precio($) Cantidad

Sólo para uso en I+D..

Formulario de consulta

   refresh    

Detalles del producto

Núm. De CAS :886900-67-0
Fórmula molecular:C20H23FN2O5
Punto de fusión:-
Código de sonrisas:FC1=CC=C(C=C1)N1CCN(CC2=CC(=O)C(OCC3OCCO3)=CO2)CC1
Densidad:
Número de catálogo:CM893339
Peso molecular:390.41
Punto de ebullición:
Nº Mdl:
Almacenamiento:

Category Infos

Piperazines
Piperazine is an organic compound consisting of a six-membered ring containing two nitrogen atoms in opposite positions in the ring. The chemical formula of piperazine is C4H10N2, and it is an important pharmaceutical intermediate. Pyrimidines and piperazines are known to be the backbone of many bulk compounds and important core structures for approved drugs; studies have shown that combining a pyridine ring with a piperazine moiety within a single structural framework enhances biological activity.
Dioxolanes
Dioxolane is a heterocyclic acetal with the formula (CH2)2O2CH2. It is related to tetrahydrofuran by exchanging an oxygen for the CH2 group. The isomer 1,2-dioxolane (in which the two oxygen centers are adjacent) is a peroxide. 1,3-Dioxolane is used as solvent and comonomer in polyacetal. The dioxolane-type and their hydrogenolysis can provide very valuable partially protected building blocks either for oligosaccharide syntheses or sugar transformations.
Pyrones
Pyrones or pyranones are a class of heterocyclic chemical compounds. They contain an unsaturated six-membered ring containing one oxygen atom and a ketone functional group. There are two isomers denoted as 2-pyrone and 4-pyrone. 2-Pyrone is used in organic synthesis as a building block for more complex chemical structures because it may participate in a variety of cycloaddition reactions to form bicyclic lactones. Pyrone derivatives are extremely prevalent structural motif in diverse naturally and synthetically occurring bioactive molecules having a broad array of chemotherapeutic potentials.