Nombre del producto:1-[4-(6,8-dibromo-2-oxo-2H-chromen-3-yl)-1,3-thiazol-2-yl]pyrrolidine-2,5-dione

IUPAC Name:1-[4-(6,8-dibromo-2-oxo-2H-chromen-3-yl)-1,3-thiazol-2-yl]pyrrolidine-2,5-dione

CAS:2319876-00-9
Fórmula molecular:C16H8Br2N2O4S
Pureza:95%+
Número de catálogo:CM796860
Peso molecular:484.12

Unidad de embalaje Stock disponible Precio($) Cantidad

Sólo para uso en I+D..

Formulario de consulta

   refresh    

Detalles del producto

Núm. De CAS :2319876-00-9
Fórmula molecular:C16H8Br2N2O4S
Punto de fusión:-
Código de sonrisas:BrC1=CC(Br)=C2OC(=O)C(=CC2=C1)C1=CSC(=N1)N1C(=O)CCC1=O
Densidad:
Número de catálogo:CM796860
Peso molecular:484.12
Punto de ebullición:
Nº Mdl:
Almacenamiento:

Category Infos

Thiazoles
Thiazoles are very important functional groups in medicinal chemistry. They act as ligands on a variety of biological matrices. Thiazoles are used in a wide range of therapeutic applications, such as antibacterial, antiretroviral, antifungal, antiallergic, antihypertensive, pain treatment, and to control symptoms of schizophrenia.
Pyrrolidines
Pyrrolidine, also known as tetrahydropyrrole, is a saturated five-membered heterocyclic ring, which is miscible with water. Pyrrolidine exists in many alkaloids and drug molecules, such as kappa opioids, antagonists of dopamine D4 receptors, and HIV reverse transcriptase inhibitors.
Coumarins
Coumarin occurs naturally in a variety of plants, such as lentils, sweet sawdust, vanilla grass, and sweet grass. Coumarin has a simple structure, benzopyrone, associated with different reaction centers. Coumarins are further subdivided into different classes: simple coumarins, pyranocoumarins, furanocoumarins, dicoumarins and isocoumarins. Coumarin derivatives are an important class of natural plant metabolites with various biological activities. They can also be synthesized artificially, and various synthetic coumarin derivatives (azoles, sulfonyls, furans, pyrazoles, etc.) have shown good anticancer, antitumor and antiproliferative activities. Coumarin derivatives are not only effective anticancer agents, but also possess minimum side effects. Based on different substitution patterns, these potential active substances show a great ability to modulate potential anticancer activities.