Fluorine is the most electronegative element in the periodic table, and the fluorine atom has a small atomic radius, so fluorine-containing organic compounds have many wonderful properties. For example, the introduction of fluorine atoms or fluorine-containing groups into drug molecules can improve the permeability to cell membranes, metabolic stability and bioavailability; in addition, the introduction of fluorine atoms will improve the lipid solubility of the compound and promote its absorption in the body. The speed of delivery changes the physiological effect. In the field of medicinal chemistry, the introduction of fluorine atoms into organic molecules is an important direction for the development of new anticancer drugs, antitumor drugs, antiviral agents, anti-inflammatory drugs, and central nervous system drugs.
Triazole refers to a heterocyclic compound with the molecular formula C2H3N3, which has a five-membered ring consisting of two carbon atoms and three nitrogen atoms. Neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease already affect many people around the world, and these numbers are increasing rapidly. Treatment for these disorders is often aimed at relieving symptoms and has no cure. Research on new molecules is underway, and heterocyclic compounds have important pharmacological implications. Triazoles and tetrazoles are emerging as new molecules in this field.
The molecular structure of cyclobutane has four carbon atoms, and its four carbon atoms are not in the same plane, which is the folded conformation of cyclobutane. Cyclobutane itself is not of commercial or biological interest, but more complex derivatives are important in biology and biotechnology. Currently, nine FDA-approved drugs contain the cyclobutane structure. From the perspective of therapeutic areas, cyclobutyl drugs are mainly distributed in popular areas such as tumors, neurological diseases, infectious diseases, endocrine and metabolic diseases.