Nombre del producto:N-{2-[(3-methyl-1,2,4-oxadiazol-5-yl)methyl]phenyl}-2,1,3-benzothiadiazole-5-carboxamide

IUPAC Name:N-{2-[(3-methyl-1,2,4-oxadiazol-5-yl)methyl]phenyl}-2,1,3-benzothiadiazole-5-carboxamide

CAS:1448046-92-1
Fórmula molecular:C17H13N5O2S
Pureza:95%+
Número de catálogo:CM992859
Peso molecular:351.38

Unidad de embalaje Stock disponible Precio($) Cantidad

Sólo para uso en I+D..

Formulario de consulta

   refresh    

Detalles del producto

Núm. De CAS :1448046-92-1
Fórmula molecular:C17H13N5O2S
Punto de fusión:-
Código de sonrisas:CC1=NOC(CC2=C(NC(=O)C3=CC4=NSN=C4C=C3)C=CC=C2)=N1
Densidad:
Número de catálogo:CM992859
Peso molecular:351.38
Punto de ebullición:
Nº Mdl:
Almacenamiento:

Category Infos

Oxadiazoles
Oxadiazoles are a class of heterocyclic aromatic compounds with the molecular formula C2H2N2O, which have special biological activities and thermodynamic properties. Five-membered heterocyclic moieties composed of three or two heteroatoms are of great interest to researchers because these compounds show significant therapeutic potential. These heterocycles can serve as a building block for the development of novel molecular structures.
Benzothiadiazoles
The two N atoms in Benzothiadiazole could possibly form intermolecular hydrogen bonding, leading to a more planar backbone. Benzothiadiazole is a strong electron-accepting molecular fragment. By fusing it with thiazole donor-acceptor dyes, near-infrared fluorescence was created. The benzothiadiazole ring is a useful n-type building block for designing electron-transport materials for organic and polymer light-emitting diodes (LEDs). Arene- and heteroarene-fused thiadiazoles have also found use in the design of low-band-gap materials for the construction of organic field-effect transmitters (OFETs), as stable organic radicals, and as one or two photon-absorbing materials for the design of nonlinear near-infrared (NIR) dyes. Benzothiadiazoles acting as the electron-accepting cores have been incorporated into dendrimer-type light-harvesting materials.

Related Products



Browsing History