Nombre del producto:N-[5-({2-[4-(4-chlorophenyl)piperazin-1-yl]-2-oxoethyl}sulfanyl)-1,3,4-thiadiazol-2-yl]cyclobutanecarboxamide

IUPAC Name:N-[5-({2-[4-(4-chlorophenyl)piperazin-1-yl]-2-oxoethyl}sulfanyl)-1,3,4-thiadiazol-2-yl]cyclobutanecarboxamide

CAS:1251627-82-3
Fórmula molecular:C19H22ClN5O2S2
Pureza:95%+
Número de catálogo:CM994539
Peso molecular:451.99

Unidad de embalaje Stock disponible Precio($) Cantidad

Sólo para uso en I+D..

Formulario de consulta

   refresh    

Detalles del producto

Núm. De CAS :1251627-82-3
Fórmula molecular:C19H22ClN5O2S2
Punto de fusión:-
Código de sonrisas:ClC1=CC=C(C=C1)N1CCN(CC1)C(=O)CSC1=NN=C(NC(=O)C2CCC2)S1
Densidad:
Número de catálogo:CM994539
Peso molecular:451.99
Punto de ebullición:
Nº Mdl:
Almacenamiento:

Category Infos

Piperazines
Piperazine is an organic compound consisting of a six-membered ring containing two nitrogen atoms in opposite positions in the ring. The chemical formula of piperazine is C4H10N2, and it is an important pharmaceutical intermediate. Pyrimidines and piperazines are known to be the backbone of many bulk compounds and important core structures for approved drugs; studies have shown that combining a pyridine ring with a piperazine moiety within a single structural framework enhances biological activity.
Cyclobutanes
The molecular structure of cyclobutane has four carbon atoms, and its four carbon atoms are not in the same plane, which is the folded conformation of cyclobutane. Cyclobutane itself is not of commercial or biological interest, but more complex derivatives are important in biology and biotechnology. Currently, nine FDA-approved drugs contain the cyclobutane structure. From the perspective of therapeutic areas, cyclobutyl drugs are mainly distributed in popular areas such as tumors, neurological diseases, infectious diseases, endocrine and metabolic diseases.
Thiadiazoles
Thiadiazoles are a subfamily of azoles. Structurally, they are five-membered heterocyclic compounds containing two nitrogen atoms and one sulfur atom, and two double bonds, forming an aromatic ring. Depending on the relative positions of the heteroatoms, there are four possible structures; these forms do not interconvert and are therefore structural isomers rather than tautomers. These compounds themselves are rarely synthesized and have no particular utility, however, compounds that use them as structural motifs are fairly common in pharmacology.