Nombre del producto:2-[(1-methyl-1H-1,2,3,4-tetrazol-5-yl)sulfanyl]-N-{2-[6-oxo-3-(thiophen-2-yl)-1,6-dihydropyridazin-1-yl]ethyl}acetamide

IUPAC Name:2-[(1-methyl-1H-1,2,3,4-tetrazol-5-yl)sulfanyl]-N-{2-[6-oxo-3-(thiophen-2-yl)-1,6-dihydropyridazin-1-yl]ethyl}acetamide

CAS:1219913-40-2
Fórmula molecular:C14H15N7O2S2
Pureza:95%+
Número de catálogo:CM821728
Peso molecular:377.44

Unidad de embalaje Stock disponible Precio($) Cantidad

Sólo para uso en I+D..

Formulario de consulta

   refresh    

Detalles del producto

Núm. De CAS :1219913-40-2
Fórmula molecular:C14H15N7O2S2
Punto de fusión:-
Código de sonrisas:CN1N=NN=C1SCC(=O)NCCN1N=C(C=CC1=O)C1=CC=CS1
Densidad:
Número de catálogo:CM821728
Peso molecular:377.44
Punto de ebullición:
Nº Mdl:
Almacenamiento:

Category Infos

Pyridazines
Pyridazine, also known as o-diazobenzene, is a six-membered heterocyclic compound containing two nitrogen heteroatoms in the 1 and 2 positions with a special structure and a wide biological activity. Pyridazine is more and more popular in drug development, and a variety of pyridazine drugs have been developed and marketed. From the perspective of the therapeutic field, pyridazine drug molecules are mainly used for tumor treatment, but also involve in many therapeutic fields such as inflammation, hypertension and cardiovascular disease. With the increase and in-depth of research, pyridazine drugs will play more roles in the treatment of diseases.
Thiophenes
Thiophene is a five-membered heterocyclic compound containing a sulfur heteroatom with the molecular formula C4H4S. Thiophene is aromatic and is very similar to benzene; electrophilic substitution reaction is easier than benzene, and it is mainly substituted at the 2-position. Thiophene ring system has certain stability to oxidant.
Tetrazoles
Tetrazoles are doubly unsaturated five-membered aromatic heterocycles consisting of one carbon atom and four nitrogen atoms. Tetrazole derivatives are a major class of heterocyclic compounds that are important for medicinal chemistry and drug design because of their not only isosteric properties with carboxylic acid and amide moieties, but also metabolic stability and other beneficial physicochemical properties.